Sains Malaysiana 54(2)(2025): 415-424

http://doi.org/10.17576/jsm-2025-5402-08

 

Potensi Mikrosfera Karbon sebagai Pengkapsul Mangkin Aluminium Sulfat

(Carbon Microspheres Potential as Catalyst Aluminium Sulfate Capsules)

 

NUR AZYAN BINTI ZULKEFLI, MUHAMMAD NUR FAEZ MOHD SAHAID, MUHAMMAD ASHMAN HAKIMI BIN AZIZAN & SHARIFAH NABIHAH BINTI SYED JAAFAR*

 

Program Sains Bahan, Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 20 August 2024/Accepted: 28 October 2024

 

Abstrak

Mangkin aluminium sulfat (Al2(SO4)3) memainkan peranan yang penting terutamanya dalam penghasilan bahan kimia ringkas kerana memiliki tapak asid Lewis dan Brønsted. Walau bagaimanapun, fungsi Al2(SO4)3 masih terhad kerana ia mudah terdegradasi pada tindak balas kritikal yang menyebabkan kebocoran tapak aktif pada hasil akhir tindak balas. Maka, kajian ini bertujuan untuk mengkapsulkan Al2(SO4)3 dengan mikrosfera karbon melalui kaedah emulsi (tunggal dan ganda dua) dengan memvariasikan penambahan ammonium bikarbonat (NH4HCO3) pada setiap lapisan emulsi. Keputusan mikroskop optik (OM) mendapati bahawa mikrosfera karbon-aluminium sulfat (MK-Al2(SO4)3) yang melalui emulsi ganda dua memberikan saiz mikrosfera yang lebih besar (4.11-4.73 µm) berbanding emulsi tunggal (1.29 -1.83 µm). Analisis mikroskop elektron imbasan (SEM) pula menunjukkan mikrosfera MK-Al2(SO4)3 tanpa kehadiran porogen, berjaya membentuk sfera yang sempurna dan mempunyai permukaan yang licin berbanding sampel yang ditambahkan dengan porogen. Walau bagaimanapun, penggunaan porogen 15% (lapisan emulsi pertama) dan 20% (lapisan emulsi kedua) didapati mempengaruhi kebolehmasukan Al2(SO4)3 ke dalam mikrosfera karbon dan dapat dilihat melalui difraktogram XRD dan termogram TGA-DTG.

 

Kata kunci: Emulsi; karbon hitam; liang; pengoksidaan; porogen

 

Abstract

The catalyst aluminium sulfate (Al2(SO4)3) plays an important role especially in the production of simple chemicals because it has Lewis and Brønsted acid sites. However, the functionality of Al2(SO4)3 is still limited because it is easily degraded at the critical reaction, which causes leakage of the active site in the final reaction product. Therefore, this study aims to encapsulate Al2(SO4)3 with carbon microspheres through the emulsion method (single and double) by varying the amount of ammonium bicarbonate (NH4HCO3) to each emulsion layer. The results of optical microscopy (OM) showed that carbon-aluminium sulfate microspheres (MK-Al2(SO4)3) that passed through a double emulsion gave a larger microsphere size (4.11-4.73 µm) compared to a single emulsion (1.29 -1.83 µm). SEM analysis showed that MK-Al2(SO4)3 microspheres without the presence of porogen, successfully formed a perfect sphere and had a smooth surface compared to the sample added with porogen. However, the use of porogen 15% (first emulsion layer) and 20% (second emulsion layer) was found to affect the capsulation of Al2(SO4)3 into carbon microspheres and can be seen through XRD diffractogram and TGA-DTG thermogram.

 

Keywords: Carbon black; emulsion; oxidation; pores; porogen

 

REFERENCES

Afiqah-Idrus, A., Abdulkareem-Alsultan, G., Asikin-Mijan, N., Fawzi Nassar, M., Voon, L., Hwa Teo, S., Agustiono Kurniawan, T., Athirah Adzahar, N., Surahim, M., Zulaika Razali, S., Islam, A., Yunus, R., Alomari, N. & Hin Taufiq-Yap, Y. 2024. Deoxygenation of waste sludge palm oil into hydrocarbon rich fuel over carbon-supported bimetallic tungsten-lanthanum catalyst. Energy Conversion and Management 23: 100589.

Alipour, S., Shirooee, A. & Ahmadi, F. 2020. Porogen effects on aerosolization properties of fluconazole loaded plga large porous particles. International Journal of Applied Pharmaceutics 12(4): 258-263.

Anuar, N.F., Iskandar Shah, D.R.S., Ramli, F.F., Md Zaini, M.S., Mohammadi, N.A., Mohamad Daud, A.R. & Syed-Hassan, S.S.A. 2023. The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review. Journal of Cleaner Production 401: 136725.

Aprianti, N., Kismanto, A., Supriatna, N.K., Yarsono, S., Nainggolan, L.M.T., Purawiardi, R.I., Fariza, O., Ermada, F.J., Zuldian, P., Raksodewanto, A.A. & Alamsyah, R. 2023. Prospect and challenges of producing carbon black from oil palm biomass: A review. Bioresource Technology Reports 23: 101587.

Azmi, N.A.S., Lau, K.S., Chin, S.X., Zakaria, S., Chowdhury, S. & Chia, C.H. 2023. Study on effect of toluene-acid treatments of recycled carbon black from waste tyres: Physico-chemical analyses and adsorption performance. Sains Malaysiana 52(9): 2689-2697.

Bashkar, M., Bavadi, M., Ghaderi, E. & Niknam, K. 2021. Synthesis of mono- and bis-spirooxindole derivatives “on water” using double salt of aluminum sulfate–sulfuric acid as a reusable catalyst. Molecular Diversity 25(4): 2001-2015.

Bolandparvaz Jahromi, A. & Salahinejad, E. 2020. Competition of carrier bioresorption and drug release kinetics of vancomycin-loaded silicate macroporous microspheres to determine cell biocompatibility. Ceramics International 46(16): 26156-26159.

Bystrzanowska, M., Petkov, P. & Tobiszewski, M. 2019. Ranking of heterogeneous catalysts metals by their greenness. ACS Sustainable Chemistry and Engineering 7(22): 18434-18443.

Cilgi, G. & Cetisli, H. 2009. Thermal decomposition of kinetic of aluminium sulfate hydrate. Journal of Thermal Analysis and Calorimetry 98(3): 855-861.

Fan, X., Pu, Z., Zhu, M., Jiang, Z. & Xu, J. 2021. Solvent-free synthesis of PEG modified polyurethane solid-solid phase change materials with different Mw for thermal energy storage. Colloid and Polymer Science 299: 835-843.

Fares, M.M., Al-Rub, F.A.A. & Mohammad, A.R. 2020. Ultimate eradication of the ciprofloxacin antibiotic from the ecosystem by nanohybrid go/o-cnts. ACS Omega 5(9): 4457-4468.

Huang, B., Liu, G., Wang, P., Zhao, X. & Xu, H. 2019. Effect of nitric acid modification on characteristics and adsorption properties of lignite. Processes 7(3): 167.

Hu, X.M., Wang, D.M., Cheng, W.M. & Zhou, G. 2014. Effect of polyethylene glycol on the mechanical property, microstructure, thermal stability, and flame resistance of phenol-urea-formaldehyde foams. Journal of Materials Science 49(4): 1556 – 1565.

Iwanow, M., Gärtner, T., Sieber, V. & König, B. 2020. Activated carbon as catalyst support: Precursors, preparation, modification and characterization. Journal of Organic Chemistry 16: 1188-1202.

Jiang, Y., Li, Z., Li, Y., Chen, L., Zhang, H., Li, H. & Yang, S. 2023. Recent advances in sustainable catalytic production of 5-methyl-2-pyrrolidones from bio-derived levulinate. Fuel 334: 126629.

Kang, L. & Zhu, M. 2019. An efficient Au catalyst supported on hollow carbon spheres for acetylene hydrochlorination. RSC Advances 9(55): 31812-31818.

Kate, A., Sahu, L.K., Pandey, J., Mishra, M. & Sharma, P.K. 2022. Green catalysis for chemical transformation: The need for the sustainable development. Current Research in Green and Sustainable Chemistry 5: 100248.

Kim, J.H., Hwang, S.Y., Park, J.E., Lee, G.B., Kim, H., Kim, S. & Hong, B.U. 2019. Impact of the oxygen functional group of nitric acid-treated activated carbon on KOH activation reaction. Carbon Letters 29(3): 281-287.

Li, L.Y., Gong, X.D. & Abida, O. 2019. Waste-to-resources: Exploratory surface modification of sludge-based activated carbon by nitric acid for heavy metal adsorption. Waste Management 87: 375-386.

Li, R., Wu, Y., Bai, Z., Guo, J. & Chen, X. 2020. Effect of molecular weight of polyethylene glycol on crystallization behaviors, thermal properties and tensile performance of polylactic acid stereocomplexes. RSC Advances 10(69): 42120-42127.

Liu, Y., Wang, J., Wang, F., Han, Z., Zhu, X., Liu, Y., Cheng, M., Song, M., Wang, R., Wang, T., Miao, Y., Liu, J. & She, Y. 2022. Preparation of molecularly imprinted polymer for selective solid-phase extraction and simultaneous determination of five sulfonylurea herbicides in cereals. Sains Malaysiana 51(6): 1707-1724.

Ma, C., Hao, Q., Hou, J., Liu, A. & Xiang, X. 2024. Regulating oxygenated groups and carbon defects of carbon-based catalysts for electrochemical oxygen reduction to H2O2 by a mild and self-recycled modification strategy. Carbon Research 3: 5.

Maulidna, Wirjosentono, B., Tamrin & Marpaung, L. 2020. Microencapsulation of ginger-based essential oil (Zingiber cassumunar roxb) with chitosan and oil palm trunk waste fiber prepared by spray-drying method. Case Studies in Thermal Engineering 18: 100606.

Mudrić, J., Šavikin, K., Ibrić, S. & Đuriš, J. 2019. Double emulsions (W/O/W emulsions): Encapsulation of plant bioactives. Lekovite Sirovine(39): 76-83.

Nandiyanto, A.B.D., Fiandini, M., Fadiah, D.A., Muktakin, P.A., Ragadhita, R., Nugraha, W.C., Kurniawan, T., Bilad, M.R., Yunas, J. & Mahdi Al Obaidi, A.S. 2023. Sustainable biochar carbon microparticles based on mangosteen peel as biosorbent for dye removal: Theoretical review, modelling, and adsorption isotherm characteristics. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 105(1): 41-58.

Otor, H.O., Steiner, J.B., García-Sancho, C. & Alba-Rubio, A.C. 2020. Encapsulation methods for control of catalyst deactivation: A review. ACS Catalysis 10(14): 7630-7656.

Pełech, I., Sibera, D., Staciwa, P., Narkiewicz, U. & Cormia, R. 2021. Pressureless and low-pressure synthesis of microporous carbon spheres applied to CO2 adsorption. Molecules 25(22): 5328.

Piacentini, E., Bazzarelli, F., Poerio, T., Albisa, A., Irusta, S., Mendoza, G., Sebastian, V. & Giorno, L. 2020. Encapsulation of water-soluble drugs in Poly (vinyl alcohol) (PVA)- microparticles via membrane emulsification: Influence of process and formulation parameters on structural and functional properties. Materials Today Communications 24: 100967.

Rego, A.S.C., Marprates, C.V.B., Silva, T.S.X., Neto, J.G., Navarro, R.C.S., Souza, R.F.M. & Brocchi, E.A. 2021. KAl(SO4)2 thermal decomposition kinetics modeling through graphical and PSO methods. Journal of Materials Research and Technology 14: 1975-1984.

Rehman, A., Park, M. & Park, S.J. 2019. Current progress on the surface chemical modification of carbonaceous materials. Coatings 9(2): 103.

Saad, M.J., Hua, C.C., Misran, S., Zakaria, S., Sajab, M.S. & Abdul Rahman, M.H. 2020. Rice husk activated carbon with naoh activation: Physical and chemical properties. Sains Malaysiana 49(9): 2261-2267.

Sahaid, M.N.F., Jia Xin, L., Najmi, B.N. & Jaafar, S.N.S. 2024. Recovered carbon black filler improves the properties of chitosan 3-dimensional composites. Polymer Science, Series A 66: 233-239.

Stepacheva, A.A., Markova, M.E., Lugovoy, Y.V., Kosivtsov, Y.Y., Matveeva, V.G. & Sulman, M.G. 2023. Plant-biomass-derived carbon materials as catalyst support, a brief review. Catalysts 13(4): 655.

Te, Z.Y., Yeoh, W.H., Shahidan, M.A. & Shahidan, N.N. 2020. A study on chitosan coated polycaprolactone (Ch-pcl) microspheres prepared via double smulsion solvent evaporation method. Materials Science Forum 1010: 541-548.

Tenorio-Garcia, E., Araiza-Calahorra, A., Simone, E. & Sarkar, A. 2022. Recent advances in design and stability of double emulsions: Trends in Pickering stabilization. Food Hydrocolloids 128: 107601.

Tiribocchi, A., Montessori, A., Bonaccorso, F., Lauricella, M. & Succi, S. 2021. Shear dynamics of polydisperse double emulsions. Physics of Fluids 33(4): 047105.

Villicaña-Molina, E., Pacheco-Contreras, E., Aguilar-Reyes, E.A. & León-Patiño, C.A. 2020. Pectin and chitosan microsphere preparation via a water/oil emulsion and solvent evaporation method for drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials 69(7): 467-475.

Zabidi, M.N.H. & Derawi, D. 2023. Production of activated carbon via steam activation of empty fruit bunch long fibre biomass. Sains Malaysiana 52(11): 3163-3176.

Zamorategui, A., Merced Martínez, J. & Tanaka, S. 2015. Maximum solid loading dispersion of Pseudoboehmite nano fiber. Journal of The Australian Ceramic Society 51(2): 40-46.

Zhang, J., Wang, Y., Dong, L., Chen, Z., Wang, Y. & Hong, M. 2020. Organic-free one-step synthesis of macro/microporous LTA zeolite and its encapsulation of metal nanoparticles. Microporous and Mesoporous Materials 293: 109823.

Zheng, G., Xia, J., Chen, Z., Yang, J. & Liu, C. 2020. Study on kinetics of the pyrolysis process of aluminum sulfate. Phosphorus, Sulfur and Silicon and the Related Elements 195(4): 285-292.

 

*Corresponding author; email: nabihah@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next