Sains Malaysiana 54(2)(2025): 415-424
http://doi.org/10.17576/jsm-2025-5402-08
Potensi Mikrosfera Karbon sebagai Pengkapsul Mangkin Aluminium Sulfat
(Carbon Microspheres Potential as Catalyst
Aluminium Sulfate Capsules)
NUR AZYAN
BINTI ZULKEFLI, MUHAMMAD NUR FAEZ MOHD SAHAID, MUHAMMAD ASHMAN HAKIMI BIN
AZIZAN & SHARIFAH NABIHAH BINTI SYED JAAFAR*
Program Sains Bahan, Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received: 20 August
2024/Accepted: 28 October 2024
Abstrak
Mangkin aluminium sulfat (Al2(SO4)3) memainkan peranan yang penting terutamanya dalam penghasilan bahan kimia ringkas kerana memiliki tapak asid Lewis dan Brønsted. Walau bagaimanapun, fungsi Al2(SO4)3 masih terhad kerana ia mudah terdegradasi pada tindak balas kritikal yang menyebabkan kebocoran tapak aktif pada hasil akhir tindak balas. Maka, kajian ini bertujuan untuk mengkapsulkan Al2(SO4)3 dengan mikrosfera karbon melalui kaedah emulsi (tunggal dan ganda dua) dengan memvariasikan penambahan ammonium bikarbonat (NH4HCO3) pada setiap lapisan emulsi. Keputusan mikroskop optik (OM) mendapati bahawa mikrosfera karbon-aluminium sulfat (MK-Al2(SO4)3) yang melalui emulsi ganda dua memberikan saiz mikrosfera yang lebih besar (4.11-4.73 µm) berbanding emulsi tunggal (1.29 -1.83 µm). Analisis mikroskop elektron imbasan (SEM) pula menunjukkan mikrosfera MK-Al2(SO4)3 tanpa kehadiran porogen, berjaya membentuk sfera yang sempurna dan mempunyai permukaan yang licin berbanding sampel yang ditambahkan dengan porogen. Walau bagaimanapun, penggunaan porogen 15% (lapisan emulsi pertama) dan 20% (lapisan emulsi kedua) didapati mempengaruhi kebolehmasukan Al2(SO4)3 ke dalam mikrosfera karbon dan dapat dilihat melalui difraktogram XRD dan termogram TGA-DTG.
Kata kunci: Emulsi; karbon hitam; liang; pengoksidaan; porogen
Abstract
The
catalyst aluminium sulfate (Al2(SO4)3)
plays an important role especially in the production of simple chemicals
because it has Lewis and Brønsted acid sites.
However, the functionality of Al2(SO4)3 is
still limited because it is easily degraded at the critical reaction, which
causes leakage of the active site in the final reaction product. Therefore,
this study aims to encapsulate Al2(SO4)3 with
carbon microspheres through the emulsion method (single and double) by varying
the amount of ammonium bicarbonate (NH4HCO3) to each
emulsion layer. The results of optical microscopy (OM) showed that
carbon-aluminium sulfate microspheres (MK-Al2(SO4)3)
that passed through a double emulsion gave a larger microsphere size (4.11-4.73
µm) compared to a single emulsion (1.29 -1.83 µm). SEM analysis showed that
MK-Al2(SO4)3 microspheres without the presence
of porogen, successfully formed a perfect sphere and
had a smooth surface compared to the sample added with porogen.
However, the use of porogen 15% (first emulsion
layer) and 20% (second emulsion layer) was found to affect the capsulation of
Al2(SO4)3 into carbon microspheres and can be
seen through XRD diffractogram and TGA-DTG thermogram.
Keywords: Carbon
black; emulsion; oxidation; pores; porogen
REFERENCES
Afiqah-Idrus, A., Abdulkareem-Alsultan,
G., Asikin-Mijan, N., Fawzi Nassar, M., Voon, L., Hwa Teo, S., Agustiono Kurniawan, T., Athirah Adzahar,
N., Surahim, M., Zulaika Razali, S., Islam, A., Yunus, R., Alomari,
N. & Hin Taufiq-Yap, Y. 2024. Deoxygenation of
waste sludge palm oil into hydrocarbon rich fuel over carbon-supported
bimetallic tungsten-lanthanum catalyst. Energy Conversion and Management 23: 100589.
Alipour, S., Shirooee,
A. & Ahmadi, F. 2020. Porogen effects on
aerosolization properties of fluconazole loaded plga large porous particles. International Journal of Applied Pharmaceutics 12(4): 258-263.
Anuar, N.F., Iskandar Shah, D.R.S., Ramli, F.F.,
Md Zaini, M.S., Mohammadi,
N.A., Mohamad Daud, A.R. & Syed-Hassan, S.S.A.
2023. The removal of antibiotics in water by chemically modified carbonaceous
adsorbents from biomass: A systematic review. Journal of Cleaner Production 401:
136725.
Aprianti, N., Kismanto,
A., Supriatna, N.K., Yarsono,
S., Nainggolan, L.M.T., Purawiardi,
R.I., Fariza, O., Ermada,
F.J., Zuldian, P., Raksodewanto,
A.A. & Alamsyah, R. 2023. Prospect and challenges
of producing carbon black from oil palm biomass: A review. Bioresource
Technology Reports 23: 101587.
Azmi, N.A.S., Lau, K.S., Chin, S.X.,
Zakaria, S., Chowdhury, S. & Chia, C.H. 2023. Study on effect of
toluene-acid treatments of recycled carbon black from waste tyres: Physico-chemical analyses and adsorption performance. Sains Malaysiana 52(9): 2689-2697.
Bashkar, M., Bavadi, M., Ghaderi, E. & Niknam,
K. 2021. Synthesis of mono- and bis-spirooxindole derivatives “on water” using double salt of aluminum sulfate–sulfuric acid as a reusable catalyst. Molecular
Diversity 25(4): 2001-2015.
Bolandparvaz Jahromi, A.
& Salahinejad, E. 2020. Competition of carrier bioresorption and drug release kinetics of
vancomycin-loaded silicate macroporous microspheres
to determine cell biocompatibility. Ceramics International 46(16): 26156-26159.
Bystrzanowska, M., Petkov, P.
& Tobiszewski, M. 2019. Ranking of heterogeneous
catalysts metals by their greenness. ACS Sustainable Chemistry and
Engineering 7(22): 18434-18443.
Cilgi, G. & Cetisli,
H. 2009. Thermal decomposition of kinetic of aluminium sulfate hydrate. Journal of Thermal Analysis and Calorimetry 98(3): 855-861.
Fan, X., Pu, Z., Zhu, M., Jiang, Z. &
Xu, J. 2021. Solvent-free synthesis of PEG modified polyurethane solid-solid
phase change materials with different Mw for thermal energy
storage. Colloid and Polymer Science 299: 835-843.
Fares, M.M., Al-Rub, F.A.A. & Mohammad,
A.R. 2020. Ultimate eradication of the ciprofloxacin antibiotic from the
ecosystem by nanohybrid go/o-cnts. ACS Omega 5(9): 4457-4468.
Huang, B., Liu, G., Wang, P., Zhao, X.
& Xu, H. 2019. Effect of nitric acid modification on characteristics and
adsorption properties of lignite. Processes 7(3): 167.
Hu, X.M., Wang, D.M., Cheng, W.M. &
Zhou, G. 2014. Effect of polyethylene glycol on the mechanical property,
microstructure, thermal stability, and flame resistance of
phenol-urea-formaldehyde foams. Journal of Materials Science 49(4): 1556
– 1565.
Iwanow, M., Gärtner,
T., Sieber, V. & König, B. 2020. Activated carbon
as catalyst support: Precursors, preparation, modification and
characterization. Journal of Organic Chemistry 16: 1188-1202.
Jiang, Y., Li, Z., Li, Y., Chen, L., Zhang,
H., Li, H. & Yang, S. 2023. Recent advances in sustainable catalytic
production of 5-methyl-2-pyrrolidones from bio-derived levulinate. Fuel 334: 126629.
Kang, L. & Zhu, M. 2019. An efficient
Au catalyst supported on hollow carbon spheres for acetylene hydrochlorination. RSC Advances 9(55): 31812-31818.
Kate, A., Sahu,
L.K., Pandey, J., Mishra, M. & Sharma, P.K. 2022. Green catalysis for chemical
transformation: The need for the sustainable development. Current
Research in Green and Sustainable Chemistry 5: 100248.
Kim, J.H., Hwang, S.Y., Park, J.E., Lee,
G.B., Kim, H., Kim, S. & Hong, B.U. 2019. Impact of the oxygen functional
group of nitric acid-treated activated carbon on KOH activation reaction. Carbon
Letters 29(3): 281-287.
Li, L.Y., Gong, X.D. & Abida, O. 2019. Waste-to-resources: Exploratory surface
modification of sludge-based activated carbon by nitric acid for heavy metal
adsorption. Waste Management 87: 375-386.
Li, R., Wu, Y., Bai, Z., Guo, J. &
Chen, X. 2020. Effect of molecular weight of polyethylene glycol on
crystallization behaviors, thermal properties and
tensile performance of polylactic acid stereocomplexes. RSC Advances 10(69): 42120-42127.
Liu, Y., Wang, J., Wang, F., Han, Z., Zhu,
X., Liu, Y., Cheng, M., Song, M., Wang, R., Wang, T., Miao, Y., Liu, J. &
She, Y. 2022. Preparation of molecularly imprinted polymer for selective
solid-phase extraction and simultaneous determination of five sulfonylurea
herbicides in cereals. Sains Malaysiana 51(6): 1707-1724.
Ma, C., Hao, Q., Hou, J., Liu, A. &
Xiang, X. 2024. Regulating oxygenated groups and carbon defects of carbon-based
catalysts for electrochemical oxygen reduction to H2O2 by
a mild and self-recycled modification strategy. Carbon Research 3: 5.
Maulidna, Wirjosentono,
B., Tamrin & Marpaung,
L. 2020. Microencapsulation of ginger-based essential oil (Zingiber cassumunar roxb) with
chitosan and oil palm trunk waste fiber prepared by
spray-drying method. Case Studies in Thermal Engineering 18: 100606.
Mudrić, J., Šavikin,
K., Ibrić, S. & Đuriš,
J. 2019. Double emulsions (W/O/W emulsions): Encapsulation of plant bioactives. Lekovite Sirovine(39): 76-83.
Nandiyanto, A.B.D., Fiandini,
M., Fadiah, D.A., Muktakin,
P.A., Ragadhita, R., Nugraha,
W.C., Kurniawan, T., Bilad, M.R., Yunas, J. &
Mahdi Al Obaidi, A.S. 2023. Sustainable biochar
carbon microparticles based on mangosteen peel as biosorbent for dye removal: Theoretical review, modelling,
and adsorption isotherm characteristics. Journal of Advanced Research in
Fluid Mechanics and Thermal Sciences 105(1): 41-58.
Otor, H.O., Steiner, J.B., García-Sancho, C.
& Alba-Rubio, A.C. 2020. Encapsulation methods for control of catalyst
deactivation: A review. ACS Catalysis 10(14): 7630-7656.
Pełech, I., Sibera, D., Staciwa, P., Narkiewicz, U.
& Cormia, R. 2021. Pressureless and low-pressure synthesis of microporous carbon spheres applied to CO2 adsorption. Molecules 25(22): 5328.
Piacentini, E., Bazzarelli,
F., Poerio, T., Albisa, A., Irusta, S., Mendoza, G., Sebastian, V. & Giorno, L. 2020. Encapsulation of water-soluble drugs in
Poly (vinyl alcohol) (PVA)- microparticles via membrane emulsification:
Influence of process and formulation parameters on structural and functional
properties. Materials Today Communications 24: 100967.
Rego, A.S.C., Marprates,
C.V.B., Silva, T.S.X., Neto, J.G., Navarro, R.C.S.,
Souza, R.F.M. & Brocchi, E.A. 2021. KAl(SO4)2 thermal decomposition kinetics modeling through
graphical and PSO methods. Journal of Materials Research and Technology 14: 1975-1984.
Rehman, A., Park, M. & Park, S.J. 2019.
Current progress on the surface chemical modification of carbonaceous
materials. Coatings 9(2): 103.
Saad, M.J., Hua, C.C., Misran, S., Zakaria,
S., Sajab, M.S. & Abdul Rahman, M.H. 2020. Rice
husk activated carbon with naoh activation: Physical
and chemical properties. Sains Malaysiana 49(9): 2261-2267.
Sahaid, M.N.F., Jia Xin, L., Najmi,
B.N. & Jaafar, S.N.S. 2024. Recovered carbon black filler improves the
properties of chitosan 3-dimensional composites. Polymer Science, Series A 66:
233-239.
Stepacheva, A.A., Markova, M.E., Lugovoy,
Y.V., Kosivtsov, Y.Y., Matveeva,
V.G. & Sulman, M.G. 2023. Plant-biomass-derived
carbon materials as catalyst support, a brief review. Catalysts 13(4):
655.
Te, Z.Y., Yeoh, W.H., Shahidan,
M.A. & Shahidan, N.N. 2020. A study on chitosan
coated polycaprolactone (Ch-pcl) microspheres
prepared via double smulsion solvent evaporation
method. Materials Science Forum 1010: 541-548.
Tenorio-Garcia, E., Araiza-Calahorra, A., Simone, E. & Sarkar, A. 2022. Recent
advances in design and stability of double emulsions: Trends in Pickering
stabilization. Food Hydrocolloids 128: 107601.
Tiribocchi, A., Montessori, A., Bonaccorso, F., Lauricella, M. & Succi, S.
2021. Shear dynamics of polydisperse double emulsions. Physics of Fluids 33(4): 047105.
Villicaña-Molina, E., Pacheco-Contreras, E.,
Aguilar-Reyes, E.A. & León-Patiño, C.A. 2020.
Pectin and chitosan microsphere preparation via a water/oil emulsion and
solvent evaporation method for drug delivery. International Journal of
Polymeric Materials and Polymeric Biomaterials 69(7): 467-475.
Zabidi, M.N.H. & Derawi,
D. 2023. Production of activated carbon via steam activation of empty fruit
bunch long fibre biomass. Sains Malaysiana 52(11): 3163-3176.
Zamorategui, A., Merced Martínez, J. & Tanaka, S.
2015. Maximum solid loading dispersion of Pseudoboehmite nano fiber. Journal of
The Australian Ceramic Society 51(2): 40-46.
Zhang, J., Wang, Y., Dong, L., Chen, Z.,
Wang, Y. & Hong, M. 2020. Organic-free one-step synthesis of
macro/microporous LTA zeolite and its encapsulation of metal nanoparticles. Microporous
and Mesoporous Materials 293: 109823.
Zheng, G., Xia, J., Chen, Z., Yang, J.
& Liu, C. 2020. Study on kinetics of the pyrolysis process of aluminum sulfate. Phosphorus, Sulfur and Silicon and the Related Elements 195(4):
285-292.
*Corresponding author; email:
nabihah@ukm.edu.my